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Abstract  

Extreme value of the wind speed over the block of time period of one year in a given historical 

data set for a specific site are extracted for developing wind hazards model. In the hazard model 

development, year wise wind speed extrema are fitted with three parameters continuous 

generalized extreme value (GEV) distribution. Size of the sample space determines the variation 

of model parameters. Wind hazards model uncertainty has been assessed using the sampling 

based methodology. At a new site, there may not be available wind speed measurement station. In 

that case, extreme value analysis can be done using historical data provided by the stations near 

to the site. A methodology for statistical aggregation of multiple models is developed and 

demonstrated considering data from four measuring stations near to a site. In this statistical 

aggregation method, the statistical property of the GEV model has been preserved.  The variation 

return period of wind speed due to individual models are compared with that of the statistically 

aggregated model. 
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1. Introduction 

Extreme value analysis[1] of collected historical data of meteorological, seismic events are 

important for designing the engineering structures, system and component robust enough to 

mailto:sbera@aerb.gov.in
mailto:dbnagrale@aerb.gov.in
mailto:ukp@aerb.gov.in
mailto:ddatta@barc.gov.in


2 

 

withstand external hazards such as wind load, flood level, earthquake etc. The probability and 

statistics [2, 3] are in extensive use in the design of engineering structures and safety assessment. 

Flood level, tsunami height, wind speed are beyond control of the human being. The behaviours 

of these variables are random in nature. Designing of a nuclear facility, safety important structure 

like cooling tower, stack, etc., requires prior knowledge about the variation of these variables 

more specific to a given site. Designer may want to know the extreme value such as minimum or 

maximum value of the hazard parameters to justify the design basis of the engineering structure. 

The design basis flood level, tsunami height, and wind load to the tall structure such as chimney 

and industrial stack are few examples where extreme value is important in design [4]. These 

extreme values do not follow the central limit theory (e.g. normal distribution) [5]. When the 

minimum value is of interest, the distribution is skewed toward lower values. Similarly, the 

distribution skewed towards higher value in case when the maximum value is the desired 

quantity. There are two approaches to estimate the extreme value: (1) block maxima approach [6] 

and (2) peak over threshold approach. There are many extreme value distribution functions such 

as Gumbel distribution, Weibull distribution and Generalised Extreme Value (GEV) distribution 

function, etc. [7, 8] used in block maxima approach. However, generalised Pareto distribution is 

used in peak over threshold approach [9, 10].  These distributions are utilised for estimation of 

extreme values. Most of the extreme value analyses are carried out using the generalised extreme 

value distribution[11].   

In the present analytical study, wind speed is considered to be an extreme value variable. For 

the extreme value analysis, wind speed data for several years are required for the analysis. For a 

new site, such a detailed data based with measured meteorological parameter may not available. 

In that case, measurement in the nearest meteorological stations to the new site can be used. In 

the study reported here the year wise maximum wind speed data are fitted with generalised 

extreme value (GEV) distribution function. With known fitted parameters, the extreme value 

analysis model is generated to extrapolate the extreme value for the desired return period.  

When a mathematical model for a physical system is developed, response of the model may 

not exactly replicate the actual system. The deviation of model response from actual system may 

be due to the error associated with input arguments or model parameter. (S. Bera et al. MS-17-58, 

2017) has demonstrated the analytical input error propagation methodology for a double 

exponential function [12].  Estimation of model parameters through curve fitting leads to the 

uncertainty associated with the sample size. Low sample size data leads to increase the 

uncertainty in model parameters. In this study, estimation of model uncertainty has been 
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emphasised. Probabilistic method based on random sampling from the desired distribution has 

been used to estimate the model uncertainty. 

Statistical aggregation methodology developed by (S. Bera et al., MS-17-65, 2017)[13] for 

multiple stations has been used to obtain the average GEV model for return period estimation. In 

this case study, wind speed data collected over several years in nearest four stations as reported in 

(S. Bera et al., MS-17-65, 2017)[13] are considered for extreme value analysis.   

2. Theoretical Methodology 

2.1. Generalized Extreme Value Analysis model 

The three parameter distribution function of the standard GEV is given in Equation (1). 

 

where, ‘k’, ‘m’, ‘s’ are known as all-important shape parameter, location parameter, scale 

parameter respectively. All-important shape parameter determines the nature of the tail 

distribution. The extreme value distribution in Equation (1) is generalised in the sense that 

parametric form subsumes three types of distributions which are known by other names 

according to the value of ‘k’. If the data related to the year wise maximum value of wind speed is 

obtained for ‘n’ number of years, then distribution function F(x) will be calculated based on the 

empirical density estimation methodology.  

2.2. Concept of Mean Return Period 

Meteorological variables such as cyclonic wind speeds are non-deterministic values, as they 

randomly vary with time and hence, the probability of occurrence of a wind speed exceeding a 

given value has to be studied through the concept of mean return period. A characteristic wind 

speed can be defined as an order pair consisting of wind speed and associated the probability of 

occurrence.  The mean return period of a characteristic wind speed, ‘x’, denoted as T(x) is 

defined as the mean time interval between two successive values which are greater than the 

characteristic wind speed, x. Hence, the probability of experiencing a characteristic maximum 

wind speed, ‘X’, greater than ‘x’, in any one year is equal to 1/T(x). In the mathematical notation, 

it can be written as given in Equation (2). 
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By definition of cumulative distribution function, F(x), can be written as given in Equation (3). 

 

Then  can be written in terms of  as given in Equation (4). 

 

Once the data are fitted with the extreme value model, ordered pair of variable ‘x’ can be 

generated. Equation (4) will be used to obtain return period. 

2.3. Empirical Statistics  

The empirical statistics is based on non-parametric distribution. This is an approximation of 

a population density function that is derived from a sample and has no unknown parameters is the 

empirical density. This is basically an order statistics [14, 15]. In order statistics, the random 

variables  are arranged in the ascending order. Each event in the sample 

space is given equal probability (i.e. equal to ).  The empirical distribution is formed based on 

cumulative probability assignment. 

2.4. Estimation of Model Parameters 

Mathematical model of a physical system or process can be represented in an equation or set 

of equations. In a mathematical model, there will be some parameters apart from the arguments 

and responses. These parameters are called model parameters. Model parameters are being 

estimated using the argument and response data fitting with the desired model. From the station 

specific measured data, empirical distribution is calculated using Equation (5). This distribution 

is used to develop the GEV model by fitting the Equation (1). Each GEV model will have 

specific set of {k, m, s} values. There are various methods to estimate the model parameters such 

as moment method, list square fitting method, maximum likelihood estimation method and 

Bayesian estimation method [9]. As the model parameters control the response of the model, the 

sensitivity of the model parameter on the model response has to be studied. For that purpose, it is 

required to know the mean value of model parameters along with its variation.    

2.5. Estimation of  the Model Uncertainty 

 

The dispersion of the model parameter will depend on the sample data size. Small sample 

space may lead to the large uncertainty whereas large data reduces the model parameter 
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uncertainty. The methodology for assessing the model uncertainty due to the model parameter 

variation of a GEV distribution has been described below.   

The GEV model is three parameter (i.e., k, m, s) continuous distribution function. While 

fitting the Equation (1) with measured data, it is obtained the mean value of three parameters 

along with their standard deviation. Model uncertainty is the estimation error due to the variation 

of the model parameters (i.e., k, m, s) not for the input parameter such as wind speed. 

Probabilistic method has been used to estimate the model uncertainty. In this method, random 

sample has been taken uncertainty domain of three parameters with normal distribution. The 

uncertainty analysis methodology has been shown in the Fig. 1. 

Fig.1. Model uncertainty analysis methodology 

 

2.6. Sampling Methodology 

 

In general sampling is a process to draw a sample from a statistical event space. The event space 

is described in the form of continuous statistical model or distributions such as uniform, normal, 

exponential, log-normal, Weibull, etc. In general, computer generates uniform random number in 

the range [0, 1]. These random numbers are used to generate random sample from the desired 

model or distribution by one-to-one mapping of cumulative distribution function (CDF) of 

desired distribution and uniform distribution. This methodology has been graphically represented 

in the Fig. 2. In the Fig. 2, bottom left side plot represent the uniform distribution in range [0, 1]. 

Top left plot shows the CDF of the bottom uniform distribution. Bottom right side plot of Fig. 2 
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represents the desired distribution and corresponding CDF is shown in the top right plot. As both 

the CDF is bounded by range [0, 1], these can be mapped one-to-one. For the continuous 

distribution model this method is known as inverse sampling method. The methodology for 

generating a sample from the computer generated random number (i.e., ) has been shown in the 

dotted arrow form in the Fig. 2.   

 
Fig. 2. Sampling methodology 

 

2.7. Statistical Aggregation Methodology 

 

Four stations generate the four GEV models with different set of three parameters (i.e. k, m, 

s). Average model from these three models has been generated weighted average of quantile data 

of each model. Quantile data is mathematically represented as inverse of the Equation (1). 

Mathematically the quantile information is represented in Equation (5).  

 

For a given ‘F’, four values of ‘x’ can be generated for four models. If the weight given for each 

model is ‘w’, then the average value of ‘x’ will be as given in Equation (6). 

 

  Weights can be decided based on various attributes such as the distance of the measuring station 

from the site, no of data points available and reliability of the data, etc. Weights can also be 
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generated based on expert elicitation method/process. The average value of ‘x’ will be generated 

for different value of ‘F’. These data can be used to regenerate the average model of four models. 

The average GEV model will have different set of three parameter data compared to the station 

wise GEV models.  The generated average model preserved the statistical property of the GEV. 

  

3. Results and Discussions 

3.1 Statistical Aggregation of GEV models 

Maximum wind speed data given in km/h unit in a block of time period of one year for four 

stations have been plotted in the Fig. 3.  It is noted that the lowest and highest 50th percentile 

value is found in the measured data in station#1 and  station#3 respectively. For the range of wind 

speed from 10 km/h to 80 km/h, it is found that station#1 and station#3 have enveloping 

distribution function. Each data have been fitted with GEV distribution function as given in 

Equation (1) in section 2.1 to obtain the shape parameter, location parameter and scale parameter. 

 

Fig. 3. GEV models for four stations 
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The details of the curve fitting has been reported in (S. Bera et al., MS-17-65, 2017)[14]. 

Model uncertainty for four GEV models has been included in Fig. 3. 

For the statistical aggregation needs weights of individual GEV models. In this statistical 

aggregation study, equal weights are given for the each GEV model. The estimated average GEV 

model is shown as average model in Fig. 3. It is noted that the average GEV distribution follows 

in between the four individual GEV models. Again this average GEV model data has been fitted 

with GEV distribution function to obtain the three parameters. The estimated three parameters i.e. 

k, m, s are -0.04216, 34.9559, 6.34007 respectively.     

3.2 Impact on Return Period 

The variation of return period with wind speed has been estimated based on the probability 

of exceedance and shown in Figure 4.  

 

Figure 4. Variation of return period 

 It is found that for low wind speed, the variation of return period is small among all the 

models. However, the variation of the return period for high wind speed is found to be 

significantly different among models. As the stations are not actual representation of the site, 

average model can be used to predict return period.  
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4. Conclusion 

Historical wind speed data collected from four measuring stations near to a new site are used 

to demonstrate the statistical aggregation of wind hazards models. Multiple models are developed 

for each measuring stations. Model uncertainty due to the low size of the sample size has been 

assessed using Monte Carlo based sampling techniques. The average GEV model is developed 

with model parameters i.e., ‘k’, ‘m’, ‘s’ equal to -0.04216, 34.9559, 6.34007 respectively. It is 

found that for low wind speed, the variation of return period is small among all the models. 

However, the variation of the return period for high wind speed is found to be significantly 

different among models. As the stations are not actual representation of the site, average model 

can be used to predict return period and in turn to be used in designing safety important 

engineering structure, system and component till actual data is made available.   
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